Molecular karyotyping using an SNP array for genomewide genotyping.
نویسندگان
چکیده
BACKGROUND Chromosomal imbalances are a major cause of developmental defects as well as cancer and often constitute the key in identification of novel disease related genes. Classical cytogenetic methods are limited in resolution and dependent on highly skilled labour, while methods with higher resolution, based on molecular cytogenetics approaches such as matrix CGH, are not widely available. METHODS We have developed and evaluated a method we term "molecular karyotyping", using readily available and easy to handle oligonucleotide arrays originally designed for parallel genomewide analysis of over 10,000 SNPs. We show that we can easily and reliably detect unbalanced chromosomal aberrations of various sizes from as little as 250 ng of DNA on a single microarray, based on fluorescence intensity information from clusters of SNPs. RESULTS We determined the resolution of this method through analysis of 20 trios with 21 previously confirmed subtle aberrations sizing between 0.2 and 13 Mb. Duplications and deletions of at least 5 Mb in size were reliably detectable, but detection of smaller aberrations was dependent on the number of SNPs they contained, thus seven of 10 different deletions analysed, with sizes ranging from 0.2 to 3.7 Mb, were not detectable due to insufficient SNP densitiy in the respective region. CONCLUSIONS Deduction of reliable cut off levels for array peaks in our series of well characterised patients allows the use of the GeneChip Mapping 10K SNP array for performing rapid molecular karyotyping from small amounts of DNA for the detection of even subtle deletions and duplications with high sensitivity and specificity.
منابع مشابه
Genomewide linkage searches for Mendelian disease loci can be efficiently conducted using high-density SNP genotyping arrays.
Genomewide linkage searches aimed at identifying disease susceptibility loci are generally conducted using 300-400 microsatellite markers. Genotyping bi-allelic single nucleotide polymorphisms (SNPs) provides an alternative strategy. The availability of dense SNP maps coupled with recent technological developments in highly paralleled SNP genotyping makes it practical to now consider the use of...
متن کاملEffect of Combining Multiple CNV Defining Algorithms on the Reliability of CNV Calls from SNP Genotyping Data
In addition to single-nucleotide polymorphisms (SNP), copy number variation (CNV) is a major component of human genetic diversity. Among many whole-genome analysis platforms, SNP arrays have been commonly used for genomewide CNV discovery. Recently, a number of CNV defining algorithms from SNP genotyping data have been developed; however, due to the fundamental limitation of SNP genotyping data...
متن کاملTargeted capture and resequencing of 1040 genes reveal environmentally driven functional variation in grey wolves.
In an era of ever-increasing amounts of whole-genome sequence data for individuals and populations, the utility of traditional single nucleotide polymorphisms (SNPs) array-based genome scans is uncertain. We previously performed a SNP array-based genome scan to identify candidate genes under selection in six distinct grey wolf (Canis lupus) ecotypes. Using this information, we designed a target...
متن کاملGenotyping pooled DNA using 100K SNP microarrays: a step towards genomewide association scans
The identification of quantitative trait loci (QTLs) of small effect size that underlie complex traits poses a particular challenge for geneticists due to the large sample sizes and large numbers of genetic markers required for genomewide association scans. An efficient solution for screening purposes is to combine single nucleotide polymorphism (SNP) microarrays and DNA pooling (SNP-MaP), an a...
متن کاملImproved assay performance of single nucleotide polymorphism array over conventional karyotyping in analyzing products of conception.
BACKGROUND Conventional karyotyping has been a routine method to identify chromosome abnormalities in products of conception. However, this process is being transformed by single nucleotide polymorphism (SNP) array, which has advantages over karyotyping, including higher resolution and dispensing with cell culture. Therefore, the purpose of this study was to evaluate the advantage of high-resol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medical genetics
دوره 41 12 شماره
صفحات -
تاریخ انتشار 2004